Preliminary communication

EFFECT OF THE NATURE OF THE PHOSPHIDO BRIDGE ON THE CO LABILISATION IN HETEROBIMETALLIC μ-PHOSPHIDO COMPLEXES

JOHANNA SCHWALD and PAUL PERINGER*

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)

(Received January 21st, 1987)

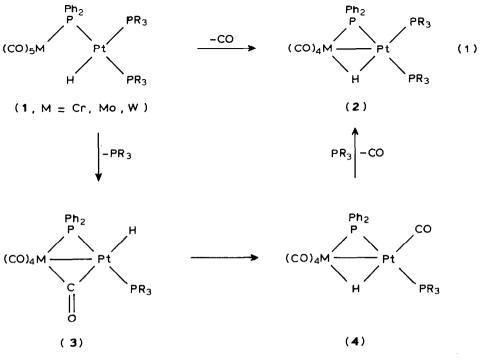
Summary

TABLE 1

In contrast to their μ -PPh₂ analogues, the compounds (OC)₅M(μ -PRH)Pt(H)(PPh₃)₂ (M = Cr, Mo, W; R = Ph or cyclohexyl) do not rearrange to form (OC)₄M(μ -PRH)(μ -H)Pt(PPh₃)₂.

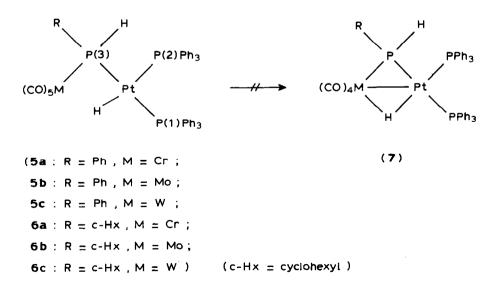
There have been several recent reports of CO labilisation during the synthesis of heterobimetallic μ -phosphido complexes [1-5]. For example, the *cis*- μ -phosphido-platinum hydrides 1 were found to rearrange to give the metal-metal bonded μ -phosphido- μ -hydrido complexes 2 within 8-150 min, depending on M [1].

The reaction was thought to proceed via an "adjacent platinum assisted mechanism involving PR_3 dissociation". The pathway is initiated by loss of PR_3 followed by the formation of the μ -CO intermediate 3 and then the terminal CO intermediate 4. This mechanism is in keeping with the sensitivity of the CO substitution on M to the nature of the phosphine ligand on Pt.


We have now found that this CO labilisation reaction is very sensitive to the nature of the phosphido bridge. Complexes 5 and 6 which have a PRH bridge

	δ(P(1))	δ(P(2))	δ(P(3))	δ(Pt) ^b	¹ J(PtP(1))	$^{1}J(PtP(2))$	¹ J(PtP(3))
5 a	23.3	27.8	- 19.5	- 5078	2375	2108	1594
5b	19.1	27.8	45.6	- 5079	2377	2124	1505
5c	22.2	27.5	-67.0	- 5058	2393	2105	1585
6a	20.9	28.4	-7.3	- 5124	2249	2174	1625
6b	21.5	28.8	- 30.6	- 5113	2251	2164	1517
6c	20.6	28.2	- 51.9	- 5101	2275	2170	1606

NMR DATA FOR (OC)₅M(µ-PRH)Pt(H)(PPh₃)₂ "


^a Solvent toluene, 300 K, ³¹P shifts relative to H_3PO_4 , ¹⁹⁵Pt shifts in ppm relative to Na_2PtCl_6 , positive to high frequency of the reference; J in Hz. ^b ddd.

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

Scheme 1

instead of the PR₂ bridge present in 1 are not converted into the corresponding metal-metal bonded μ -hydrido compounds 7, and can be crystallized without decomposition. The compounds 5 and 6 were formed by oxidative addition of M(CO)₅PRH₂ to Pt(PPh₃)₂C₂H₄, i.e. analogously to 1 [1]. The new compounds were characterized by ³¹P and ¹⁹⁵Pt NMR spectroscopy (Table 1).

References

- 1 J. Powell, M.R. Gregg and J.F. Sawyer, J. Chem. Soc., Chem. Commun., (1984) 1149.
- 2 J. Powell, J.F. Sawyer and S.J. Smith, J. Chem. Soc., Chem. Commun., (1985) 1312.
- 3 J. Powell, J.F. Sawyer and M.V.R. Stainer, J. Chem. Soc., Chem. Commun., (1985) 1314.
- 4 R.A. Jones, J.G. Lasch, N.C. Norman, A.L. Stuart, T.C. Wright and B.R. Whittlesey, Organometallics, 3 (1984) 114 and ref. cited therein.
- 5 M.J. Breen, P.M. Shulman, G.L. Geoffrey, A.L. Rheingold and W.C. Fultz, Organometallics, 3 (1984) 782 and ref. cited therein.